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Abstract 

The paper studies the impact of a broadly understood trend, which includes a change point 
in mean and monotonic trends studied by Bhattacharya et al. (1983), on the asymptotic 
behaviour of a class of tests designed to detect long memory in a stationary sequence. Our 
results pertain to a family of tests which are similar to Lo's (1991) modified RIS test. We 
show that both long memory and nonstationarity (presence of trend or change points) can 
lead to rejection of the null hypothesis of short memory, so that further testing is needed 
to discriminate between long memory and some forms of nonstationarity. We provide 
quantitative description of trends which do or do not fool the RIS-type long memory 
tests. We show, in particular, that a shift in mean of a magnitude larger than N - I / ~ ,  
where N is the sample size, affects the asymptotic size of the tests, whereas smaller shifts 
do not do so. 
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1. Introduction 

Starting with the seminal work of Hurst (1951), which was subsequently refined by Man- 
delbrot and Wallis (1969), Mandelbrot (1972), (1975) and Mandelbrot and Taqqu (1979), 
among others, a continued interest in the so-called Hurst effect lasts up to this day. Following 
Mandelbrot and Taqqu (1979) and Bhattacharya et al. (1983), this effect can be defined by 
means of the R/S statistic as follows. Let XI ,  . . .,XN be a sequence of random variables. The 
R/S statistic QN is defined as RN/SIN, where RN is the (adjusted) range, 

RN = rnax C ( x j  - XN)- min C ( x j  -xN) ,  
1 5 k 5 N  j=l l i k i N  

j = l  

and 
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is the sample variance. In (1 . l )  and (1.2), X N  is the sample mean N-' C? XI.Then by the 
Hurst effect we mean that for some H > 0.5, N V H  Q N  converges in distribution as N + m 
to a random variable which is possibly degenerate but almost surely not 0. As has been well 
documented since the 1950s, for a large number of geophysical and hydrological records the 
plots of log Q N  against log N indicate that Q N  is asymptotically proportional to N H  with 
H > 0.5. The same phenomenon has recently been observed in telecommunication and 
computer networks, see e.g. Willinger et 01. (1995) and references therein. It is also believed 
to be present in some financial and economic series; see e.g. Section 2.6 of Campbell et 01. 
(1997). 

One possible explanation for this effect is that the sample X I ,  . . . . XN is a part realization 
of a long-range dependent (or long memory) sequence, for example of a Gaussian stationary 
sequence with nonsummable covariances. Although the stationarity of a sequence, i.e. the as- 
sumption that the data possess constant mean, variance and shift-invariant covariance function. 
may appear to be an over-idealization of real data, it often provides a reasonable and useful 
approximation to a possibly nonstationary data generating model. An alternative explanation 
of the Hurst effect is that the data have short memory but are perturbed by a slowly declining 
deterministic trend or abrupt changes in parameters, like e.g. changes in mean. To the best of 
our knowledge the first comprehensive mathematical study of the Hurst effect for short memory 
models with trend was done by Bhattacharya et 01. (1983) who assumed that the observations 
X I ,  X 2 . .  . . are of the form 

Xx = f(k) + Yk, (1.3) 

where {Yk )is an ergodic sequence with summable covariances whose normalized partial sums 
converge to a Brownian motion (see (2.4) below). The sequence { f (k)} is a deterministic trend. 
Their main result states that the Hurst effect for the short memory models with trend occurs if 
and only if 

A ( N )  ,, ~ H - 1 / 2. H > ; . C > O .  

where 

with 7 ; ~= N - I  CY f ( j ) ,  and - indicates that the ratio of left- and right-hand sides tends to I 
as N -+ w .  In particular, Bhattacharya et 01. (1983) considered a monotonic trend of the form 
f (k) = cf(m + k)P, where m is an arbitrary nonnegative parameter and c' # 0. In this case 
the Hurst effect is present, unless B - or B = 0. In the most subtle case - < ,3 < 0, we 
obtain a model with trend decaying so slowly to zero that it can be confused with a long memory 
model. Assuming Gaussianity, Kiinsch (1986) suggested a procedure to discriminate between 
the monotonic trend model XI,= f ( k )  + Yk, f (k) -t 0 and long-range dependence. The 
procedure is based on the periodogram which, as shown by Kiinsch (1986), behaves differently 
for the model (1.3) and a stationary long-range dependent sequence. In a similar setting, Heyde 
and Dai ( 1996) proposed a somewhat more informative smoothed periodogram approach and 
argued that periodogram based procedures are less sensitive to departures from stationarity than 
those based on R I S  and its variants. 

A situation where an observed series exhibits the Hurst effect, but where a possible explana- 
tion for such a behaviour is believed to be different from long-range dependence, is often referred 
to as 'spurious' long memory. For recent investigations of various aspects of the 'spurious' long 
memory we refer the reader to Teverovsky and Taqqu (1997). Lobato and Savin (1998). Bos 
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et al. (1999), Mikosch and St&icB (1999), Granger and Hyung (1999) and Diebold and Inoue 
(2001). As noted by Diebold and Inoue (2001), in certain circumstances some trends (e.g. 
structural change) and long memory are 'effectively different labels for the same phenomenon, 
in which case attempts to label one as "true" and the other as "spurious" are of dubious value'. 

A similar situation also arises in the unit roots tests where structural breaks can be detected 
as a unit root and vice versa; see Perron (1990), Perron and Vogelsang (1992), Perron (1997) 
and Baum et al. (1999). 

This paper focuses on the impact of a broadly understood trend on a class of statistical 
tests designed to verify the short memory null hypothesis against the long memory alternative. 
We use here a 'classical' definition of long memory: roughly speaking a stochastic sequence 
is said to have long memory if it is covariance stationary and the autocovariance function 
is not absolutely summable. For interesting extensions of the concept of long memory we 
refer the reader to Hall (1997) and Heyde and Yang (1997). By a short memory sequence 
we mean a covariance stationary sequence with absolutely summable autocovariance function. 
These rough definitions are made precise in the following sections. Unlike many earlier studies 
which focused on simulational evidence, we provide rigorous mathematical formulations. Some 
specific questions we seek to answer are: if the data come from a short memory model perturbed 
by a trend, how 'large' must this trend be to lead to the detection of 'spurious' long memory? 
What kind of trends may fool the long memory test? We provide a general answer in terms of 
the L~ norm of the trend. Similarly, if there is a shift in the mean of a stationary short memory 
sequence, what must the magnitude of that shift be to have an impact on the test. It will be 
shown that a change of a constant magnitude which does not decrease with the sample size, will 
be registered as long memory with probability approaching 1, as the sample size, N ,  tends to 
infinity. We show that a change of the magnitude N - ' / ~is on the border line: smaller changes 
do not (asymptotically) change the significance level. Our approach encompasses traditional 
linear models as well as a family of ARCH models for which conditions for the applicability 
of the R/S type tests are naturally satisfied. 

Our results pertain to tests which are similar in spirit to Lo's (1991) test based on the mod$ed 
R/S statistic Q N ( ~ )  defined as 

with RN given in (1.1) and 

with mj(qN) = 1 - j /(qN + 1) being the Bartlett weights and the Pj being the sample 

covariances, f j  = NN-' N - j  (Xi - X N ) ( X ~ + ~- XN), 0 Ij < N .  Note that the classical 
R/S statistic corresponds to qN = 0. The second term in (1.4) was introduced by Lo (1991) 
in order to take into account short range dependence. The classical R/S analysis focused on 
estimating the Hurst coefficient as the limit of the ratio log QN(O)/ log N ,  whereas Lo's (1991) 
test is concerned with a complex null hypothesis encompassing many forms of short memory 
including ARMA and other mixing sequences with mixing coefficients which decay sufficiently 
fast. 

The present paper focuses mainly on the V/S statistic introduced by Giraitis et al. (2000a) 
which has more desirable asymptotic and finite-sample properties than the modified R/S 
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statistic. Our results can, however, be easily formulated in terms of the modified R / S  statistic 
and other related statistics, like the KPSS statistic of Kwiatkowski et al. (1992). The general 
conclusions are the same for all statistics in this class. The V / S  statistic we analyse is defined 
as v~ / ; ; ,~ .where 

Compared with the R / S  statistic, the numerator (1.5) of the V / S  statistic is based on the sample 
variance of the sums S>.k = C:( X  - X N ) ,  rather than their range (1.1). 

In Section 2, we study the effect of a trend on the size of the tests. Section 3 focuses on 
the power of the tests. Important special cases of a trend and a change in mean are analysed in 
detail in Section 4. Proofs are collected in Appendix A. 

2. Short memory and trend 

In this section we consider the following model 

where {Yk] is a short memory process and { f (N)(k)] is a deterministic trend. We now state 
the precise conditions we impose on the process {Yk] (Assumption 2.1) and on the sequence 
{ f (N)(k)] (Assumptions 2.2 and 2.3) together with several examples. 

Recall that the fourth-order cumulant of the random variables t l ,  t2, t 3  ,t4is defined by 

Throughout the paper, for t E [O, 11, W(t) stands for the standard Brownian motion and 
wO(t)= W(r) - t W(l) for the Brownian bridge. By -fi we denote the weak convergence 
of random variables, by the weak convergence of finite dimensional distributions and by 

DIO.!lthe weak convergence in the Skorokhod space D[O. I ] .  

Assumption 2.1. (Short memory.) The process ( Y L )is a fourth-order stationary zero mean 
sequence .ratisfiing conditions (i)-(iii) below,: 

( i )  the covariancefunction is absolutely summable: 

(ii) the,functional CLT holds, i.e. 
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(iii) the fourth-order cumulants satisfy the condition: 

Remark 2.1. Condition (iii) of Assumption 2.1 is required, in particular, for the consistency 
of the variance estimator (1.4). In fact, it is weaker than the usual condition in which suph is 
replaced by C h ;  cf. Chapter 9 of Anderson (1971). 

We now present two examples of processes satisfying Assumption 2.1. 

Example 2.1. Linear processes Yk = CF-, ajsk-j, where the a j  are real weights,Cj laj I 
< co,and the sj are i.i.d. random variables with zero mean, unit variance and finite fourth 
moment E E: < co are well-known to satisfy Assumption 2.1. The convergence of the finite 
dimensional distributions of N - ' I ~ s ~ ~ , ]  = N-'/' Yj can be shown, for example, as in ~ r /
Ibragimov and Linnik (197 1) (see also Giraitis and Surgailis (1986)), the tightness follows from 
the inequality E shr15 c[Nt12, and condition (iii) from the formula 

Example 2.2. Processes {qk, k E Z)satisfying the equations 

where the t k  are i.i.d. nonnegative random variables with finite fourth moment E (: < co and 
a > 0, bj 2 0, j = 1,2, . . . , arise in the study of the volatility of returns on speculative assets. 
For example, if bj = 0 for j > p and (k = s i ,  s k  N(0, l), then the q j  are the squares 
of random variables which follow the ARCH(p) model. The infinite sum in (2.6) allows us 
to interpret the ~j as the squares, or any positive powers for that matter, of the more general 
GARCH(p, q ) sequences; see Giraitis et al. (2000b) for more details and relevant references. 
Giraitis et al. (2000b) showed that if 

then the Yk = rlk - E rlk satisfy conditions (i), and validity of (iii) of Assumption 2.1 was 
established in Giraitis and Robinson (2001). Condition (ii) follows from Theorem 2.1 which 
we state here and whose proof is given in Appendix A. 

Theorem 2.1. Suppose the rlk satisb (2.6), E < co and (2.7) holds. Then as N -+ co 
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We now state the two assumptions that we impose on the trend ( f  ( N ) ( k ) }  of the nonstationary 
series (2.1). 

Assumption 2.2. The trend { f ( N ) ( k ) } k = l . , . . . ~ ,  N 2 1, is an array of real numbersfor which 
there exists a positive sequence pN and afinction h on [0, 11, which is not identically zero, 
such that 

INtI 

f ' N ) ( k )-+ h ( t )  ( N  --+ 00) (2.8) 

and 
-+ a* E [o, m].

~ 1 1 2  

The mode of convergence in (2.8) depends on the spec$c statistic. For the V / S  (and KPSS) 
statistic, (2.8) has to hold in L ~ [ o ,11. For the R / S  statistic, h is in D[O, I ]  and (2.8) has to 
hold in the sup norm. 

Assumption 2.3. Assumption 2.2 is satisfied and there exists a positive sequence rN --+ oo 
and a number 0 < a < 00, such that as N -+ oo 

and 

Note that from (2.8)and (2.9) it follows by the Cauchy inequality that lim supN p ; / ~ r N  
< 00. 


Remark 2.2. Assumption 2.2 implies that 


and Assumption 2.3 implies that 

where f ( N )  = N - I  f ( N ) ( k ) .Assumptions of this type with pN = rNc:=~ = N were used 
in Bhattacharya et al. (1983). Our assumptions looks somewhat more involved because we 
allow greater generality of nonstationarityltrend (for example, in the context considered by 
Bhattacharya et al. (1983), (2.12) holds trivially with b* = 1 ) .  
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We consider now some examples of trends. 

Example 2.3. (Change point.) Suppose that 

pl i f l l k l k * ,
f 'N'(k)  = 

p2 i f k *  < k 5 N ,  

where k* denotes a change point. We also assume that there is a 0 < t *  < 1 such that 
k* = [ t * N ] ,and that A := p1 - p2 # 0. Then Assumption 2.2 holds with pN = N ,  a* = oo 
and 

h ( t )  = pi t A t *  + p2(t - t A t * ) ;  hO( t )= A ( t  A s* - t t * ) .  

Assumption 2.3 is satisfied with rN = N ,  b* = 1 anda = p:t* + pz(1 - t * ) .  Hence 

a = a - h2 ( 1 )  = ~ ~ t * ( lt * ) .-

Example 2.4. (Hyperbolic trend.) Let 

where 8 > -112; cl E R \ (01,c2 E R.This is the example considered by Bhattacharya et al. 
(1983).Assumption 2.2 is satisfied with pN = N1+B,a* = co and 

Assumption 2.3 is satisfied with rN = N ' + ~ B ,b* = 1 and 

Example 2.5. (Hyperbolic trend depending on N . )  Suppose that 

where 8 > -;; cl E R \ {O} ,  c2 E R. Then Assumption 2.2 is satisfied with pN = N'+B, 
a* = oo,and 

Assumption 2.3 is satisfied with rN = N ' + ~ B ,  b* = 1 and 

We now state the first main result of this section which allows us to analyse the impact of 
the nonstationarity (trend) in the model X k  = f ( N ) ( k )+ Yk with stationary short memory term 
{ Y k ]on R/S-type tests of long memory. We state it for the V / S  and the modified R/S statistics 
V N / ; ; , ~  and R N / ; N , ~which are used in the long memory test below. The statements for 
other related statistics, like the KPSS statistic, are similar and can be readily obtained using 
Lemmas A.2 and A.3. 
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Theorem 2.2. Suppose the Xk are given by (2.1)where the Y k  satisfy Assumption 2.1 and the 
f ( N ) ( k )satisfy Assumption 2.3. Consider the quantities 

a w o ( t )  + a*hO(t) ifa* < oo,
Z,*(t) = 

ifa* = oo; 

ac* + a 2  ifc* < 00,
V ( C * )= 

[ a  ifc* = CO; 

1 ij-a* < CO, 
1 ij-c* < 00, 

piN-'  ifa* = oo; 
N r 

ifc* = 00. 
~ N ' N  

Suppose rN -, oo,qN -+ oo,q N / N  + 0 and the limit q N r N ~ - '  -+ c* E [0, oo]exists. 
Then 

and - RN u suPo5tql Za* ( t )  - i n f o s t 1  za*(t>
N ' / ~ ( T ~ T ~ ) - ' / ~_- -+ 

S N , q  m 
The proof of Theorem 2.2 is given in Appendix A. 
Focusing on the V / S  statistic, we now discuss the asymptotic behaviour of the test described 

in Definition 2.1 below in light of Theorem 2.2. 

Definition 2.1. (LM test.) The null hypothesis of short memory is rejected in favour of a long 
memory alternative if V N I ~ ; , ~> K .  where K > 0 is a critical value. 

Suppose first that there is no nonstationarityltrend (fk(N)= 0). Giraitis etal. (2000a) showed 
that under the null hypothesis, more precisely for a short memory process { Y k ) satisfying 
Assumption 2.1, 

where the limit distribution is parameter-free. In addition, under a long memory alternative 
which is precisely defined by Assumption 3.1, the test rejects the null hypothesis with power 
approaching 1. 

Suppose now that the data contain a nonzero trend f ( N ) ( k ) .  Theorem 2.2 above shows that 
the presence of the trend in short memory data leads to the rejection of the short memory null 
hypothesis with power tending to 1 if 

-
For instance, (2.17) holds if TN = pi/^, TN = N / q N r Nand 
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In particular, (2.18)holds true in Examples 2.3-2.5 (with >_ 0),where TNFN = N / q N  + co. 
Hence, V / S  and other R/S-type tests are sensitive both to the presence of long memory and 
a trend, in other words, they are prone to detect 'spurious' long memory. Note that the trend 
in Theorem 2.2 is rather significant in the sense that 11 f ( N ) 1 1 2  = ( ~ k N , ~ ( f ( ~ ) ( k ) ) ~ ) l / ~+ ce 
as N + co (see (2.9)). It is interesting to find out how small a trend must be to be no longer 
asymptotically detectable. With this question in mind, we shall now focus on small trends 
characterized roughly by the requirement that 

limsup ) I  f ( N ) J J 2< C < co. 
N 

Condition (2.19) implies that Assumption 2.2 holds with pN = 0( N  ' I 2 ) ,  and that (2.9)holds 
with rN = O ( 1 ) so that Assumption 2.3 cannot be satisfied with rN + co.Thus, the trends 
satisfying (2.19) fall outside the framework established in the lemma of p. 653 of Bhattacharya 
et al. (1983). The following proposition shows that such small trends cannot, as a rule, be 
detected by the V / S  test. 

Proposition 2.1. Suppose that the Xk are given by (2.1) where the Yk satisfy Assumption 2.1 
and the f ( N ) ( k )  satisfj,Assumption 2.2 with pN = O ( N  ' I 2 ) ,  (2.19) holds and, in addition, 

N-1

C 1 f 'N ' ( k )  - f ( N ) ( k+ 1)lkli2 = O ( l ) ,  (2.20) 
k=l 

f ( N ) ( k )= 0 ( N - l I 2 )  fork - N .  (2.21) 

Then (2.16) holds. 

Proo$ The proof of LemmaA.3 below shows that, under the assumptions of Proposition 2.1, 
A2 - u2+ O p  ( q /  N ) ,  which combined with Lemma A.2 below implies (2.16).S ~ , q-
Example 2.6. Small trends given by (2.14), f ( N ) ( k )= cl Jk + c21B,and by (2.15),f ( N ) ( k )= 
cl lk + c2NJB,but with B < -;, have the property that lim supN 1 1  f ( N ) 1 1 2  < co and satisfy 
the other assumptions of Proposition 2.1, so they cannot be detected by the LM test given in 
Definition 2.1 with power tending to 1. 

3. Long memory and trend 

To get a more complete picture, we look in this section at the asymptotic behaviour of the 
test statistics in situations when the long memory alternative is perturbed by a trend. We show 
that in this case vN/$2

N,q. 
4 ce no matter whether the trend is present or not, so that the short 

memory hypothesis is rejected with power tending to 1. 
Denote by W H  ( t )  a fractional Brownian motion with parameter H, i.e. a Gaussian process 

with mean zero and covariances E[WH ( t l )  WH(t2)]= (t:H + t i H  - I tl - Set also t 2 1 ~ ~ ) .  
w:,,, ( t )  = W1/Z+d( t )- t Wl/2+d (1) .  Giraitis et al. (2000a) showed that if there is no trend 
and the Xk = Yk satisfy Assumption 3.1 below, then 

Hence under the alternative of long memory V N / ~ ; , ~  and so the 5 m at the rate ( N / ~ ~ ) ~ ~ ,  
short memory hypothesis will be rejected with power tending to 1. 
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In  this section, we investigate how this rate and the asymptotic distribution are affected by 
the presence of a trend. We state the results only for the V / S  statistic, as the conclusions for 
the R I S  and KPSS statistics are the same and the corresponding formulas are easy to derive. 

Assumption 3.1. (Long memory.) The process (Yk]is a ,fo~rrth-order starionary sequence 
.sclri.\f~.i~lg c,oriditioil5 ;tlir,fOllo~~~ir~,q 

( I )  	for c > 0 arid 0 < d < C. 
co\ ( Yk. Yo) - ~ k ' ~ - l :  ( 3 . 2 )  

( i i )  for a po~iri\,e number cd. 

Obviously, under Assumption 3.1, CEOIcov(Y~.Yo)J= X .  

Before stating the results. we present two examples. 

Example 3.1. A standard class of processes satisfying Assumption 3.1 consists of linear se- 
quences Yk = a,&~- , ,  where the E L  are i.i.d. random variables with zero mean, unit 
variance and finite fourth moment, and the coefficients aj satisfy a,, - cJd-I , J + co, for 
some c > 0 and 0 < d < i. It is easy to see that (3.2) holds. Convergence in (3.3) is well 
known, see, e.g., Davydov (1970). Relation (3.4) is not difficult to verify, see Giraitis et al. 
(2000a). 

Example 3.2. A second important class of long memory processes satisfying (3.2) and (3.3) 
consists of the long memory LARCH(co) processes introduced by Robinson (1991) and inves- 
tigated by Giraitis et al. (2000): 

where { E ~ ,k E Z)is a zero mean finite variance i.i.d. sequence, and a!. BJ (with CE,/?:< GO) 

are real coefficients. Assuming that E E: = 1, o$ is seen to be the conditional variance of rk. 
Then if the /?j satisfy B j  - cJd-' , 0 < d < i, the process Yk = r: has long memory. In 
contrast to Example 2.2, neither a! nor the Bj  are assumed positive and ok, not its square, is a 
linear combination of the past rk, rather than their squares. The rk can be viewed as returns on 
a speculative asset which has 'long memory in volatility'. If CE,/?:< c for an appropriate 
constant c which depends on the fourth moment of the &k,then the Yk = rk2centred at the 
expectation satisfy conditions (i) and (ii) of Assumption 3.1, see Giraitis et al. (2000). We 
conjecture that condition (iii) also holds, but this remains an open problem. 

In the following theorem we consider the limiting distribution of the statistics V N / ~ ^ ; , ,under 
trend and long memory. 
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Theorem 3.1. Suppose the Xk are given by (2.1) where the Yk satisfy Assumption 3.1 and the 
f ( N ) ( k )  satisfy Assumption 2.3. Let rN + oo,qN + oo,q N / N  + 0 and suppose that the 

limit qk-2drN N -' + c* E [0,oo]exists. Then 

where 

cd ~ : / ~ + ~ ( t )  ifa* < co,+a*ho(t)
Za*(t )= 

ifa* = 00; 

V ( C * )= 1.ac* + c; ifc* < 00, 

ifc* = 00; 

-2d ifc* < 00, 

p i~- l  oo;ifa* = 

Note that the quantities T N ,T N ,Za* and V(c*)depend on d and are different from the 
corresponding quantities in Theorem 2.2. 

Theorem 3.1 shows that the short memory hypothesis for the model Xk = f ( N ) ( k )  + Yk 
with a large trend ( f  ( N ) ( k ) )  and long memory process {Yk)will be rejected with power tending 
to 1 i f T N f N4 00. 

In the case of Examples 2.4 and 2.5 (with 2 0) ,  we have TNFN = N / q N ,  so that by 
Theorem 3.1 the statistic v N / ? ~ , ~diverges to infinity at the rate N / q N .  This rate is the same 
as in Theorem 2.2 when (Yk)has short memory and it is faster than the rate ( ~ 1in (3.1)~ ~ ) ~ 
where {Yk)has long memory and the trend is not present. 

Theorem 3.1 follows from the following lemma whose proof is given in the appendix. 

Lemma 3.1. Under the assumptions of Theorem 3.1, 

and 

The following proposition shows that small trends, such that lim supN (1 f ( N )112 < oo,do 
not affect the limiting distribution of the V / S  statistic (3.1). In this case the short memory 
hypothesis will be rejected and the rate of divergence of the statistics V N / / ~ , ~ ,  will( ~ l q ~ ) ~ ~ ,  
be slower than N / q N  which occurs in the case of large trends and long memory. 

Proposition 3.1. Suppose the Xk are given by (2.1) where the Yk satisfy Assumption 3.1 and the 
f ( N ) ( k )satisfy Assumption 2.2 with pN = o ( N ' f 2 )  and(2.19), (2.20) and (2.21). l f q N  + 00, 

qN IN + 0, then (3.1) holds. 

Prooj Use the same argument as in the proof of Proposition 2.1 and Theorem 3.1. 
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4. The change-point model 

In this section we study in greater detail Example 2.3. Our goal is to determine the order 
of the smallest break (jump) in the mean which can be registered by the test as a presence of 
long memory. We also discuss the possibility of developing a test procedure which, in case of 
a rejection of the null hypothesis of short memory, would allow us to distinguish between the 
long memory and change point alternatives. Again, we focus only on the V/S statistic. 

Consider the general case where the magnitude of the jump depends on N: 

where k* = [s*N] and 0 < t*< 1. Set A, := -py)# 0, h!(t) := T* A ?  - r*t. 
Proposition 4.1, whose proof is given in the appendix, shows that the break in the mean of 

order AN such that A N / N - ' / ~  -+ m leads to the rejection of the short memory hypothesis 
(parts (i) and (iii)). On the other hand, a small break AN = O(N-'I2) does not effect the 
limiting behaviour of the test (part (ii)). 

Proposition 4.1. Suppose the Xk and f (N)(k) are given by (2.1)and (4.I ) ,  respectively, the 
Yk satisfy Assumption 3.1and AN N ' / ~  + a* E [-m, oo]. 

(i) Z f l ~ ~ l g , ' / ~m,  then -+ 

9, VN D+ H* -
t*(1 - T*) 

",, r*(1 - t*) 12 ' 

where 

(ii) VAN = o(N- ' /~)  (la*I < m),  then 

(iii) Zf 1 ANI N'I2 + cc (la* 1 = oo) and -+ c* (0 5 c* < GO), then 

We now describe the asymptotic behaviour of the test for the observations Xk = f ( , ) ( k ) +  Yk 
with the change point trend (4.1) and a long memory sequence ( Y k } . Similar arguments as in 
the proof of Lemma 3.1 and Proposition 4.1 yield the next result. 
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TABLE1: The limit behaviour of the V/Sstatistics. 

Limit under assumption 

Statistic Short memory Long memory Change point 

-VN uv/s 00 00 

4N VN r*(1- r*)-- 0 0
%,, 12 

0 zv/s 00 

Proposition 4.2. Suppose that the f ( N ) ( k )are given by (4.1)and the Yksatisfy Assumption 3.1. 

(i) Zf ( +co,A,  (qi2-dthen 

q ~  VN D+ H*-- -- t*(1 - t*)
ti,, t*(1 - t* )  12 ' 

(ii) I ~ A ,N 1/2-d + a* E (-00, w), then 

where Za*(?) = +a*h!(t). 

(iii) ZfIANI + co, A +C*~E [O ,  co), then -N ' / ~ - ~  ~ ~ ~ 

1 VN H*D 

+ -4 ifc* =0.
AkNl-2d(%) 

In the usual case when the magnitude of the jump AN = A # 0 in (4.1) does not depend 
on N, Propositions 4.1 and 4.2 yield that 

so the short memory hypotheses will be rejected with the same rate N / q Nif the Yk satisfy either 
the short memory Assumption 2.1 or the long memory Assumption 3.1. 

We conclude this section by summarizing in Table 1 the asymptotic behaviour of the statistic 
v ~ / S ^ ~ , ~ Yk are short- under various normalizations. Recall that in the case where the Xk =--
range dependent random variables satisfying Assumption 2.1 
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If FVlsis the distribution of Uvls and FK is the asymptotic distribution of the Kolmogorov 
statistic, then Fvls(x) = FK(n&). Recall that the uniform distance between the empir- 
ical and theoretical distribution functions is determined by the Kolmogorov statistic x 
SUP-^<^ <m I bN(t) - F(t) 1 .  More details are presented in our paper Giraitis et al. (2000a). In 
the case where the X k  = Yk satisfy Assumption 3.1, Theorem 3.1 implies that 

As was shown, the statistic VN/S^;.~ tends to infinity under both long memory (LM) and 
change point (CP) alternatives, which means that both these models can explain the rejection 
of the null hypothesis of short memory. However, the statistic (qN/N) vN/s ;̂,, exhibits a 
different behaviour under assumptions LM and CP. Since under assumption CP it converges to 
a positive constant r*( l  - r*)/ 12, this fact may allow (after construction of the corresponding 
second-order asymptotics) for large enough N to discriminate between a long memory process 
and a short memory process having a shift in mean (see the comment of Peter M. Robinson in 
Lobato and Savin (1998)). Obviously, to make the statistical difference between r * (1 - r *)/ 12 
and 0, the corresponding second-order asymptotics need to be established. The practical recipes 
and simulation study are under development. 

5. Conclusions 

It has been realized for some time that tests for long memory are sensitive to the presence of 
nonstationarity (trend and change point) in short memory data and as a rule 'large' trends will 
be registered as long memory. Following the footsteps of Bhattacharya et al. (1983), Kunsch 
(1986) and Heyde and Dai (1996), among others, in this explanatory paper we developed a 
quantitative analysis of these phenomena in a broad setting which encompasses various types 
of trends and dependence structures. 

The results of the present paper show that the rates of divergence to infinity of the test 
statistics (and the limits of the renormalized statistics) are different under short memory plus 
trend model and under the long memory, as well as under long memory plus trend and 'pure' 
(no trend) long memory. The paper clarifies the difficulties of discriminating between long 
memory and several forms of nonstationarity, and it is hoped that a better understanding of the 
possible scenarios might aid the development of procedures aimed at discriminating between 
them. These procedures are likely to involve data driven algorithms for selecting qN. A good 
starting point might be the algorithm of Buhlmann (1996) intended to find the optimal bandwidth 
for the estimation of the spectral density at zero. This corresponds exactly to our setting, but 
the assumptions imposed by Buhlmann (1996) may not be satisfied, so further investigation is 
necessary. Subsampling techniques might also be relevant because we established the existence 
of limiting distributions and rates of convergence, see Sections 3.5, 4.5 and 10.5.5 of Politis 
et al. (1999). Research of this type, which would require extensive numerical experiments, is 
however beyond the intended scope of the present paper. 

Appendix A. 

A.1. Proof of Theorem 2.1 

As mentioned in Example 2.2, the Y j  = qj  - E q,  satisfy conditions (2.3) and (2.5), see, 
respectively, Proposition 3.1 in Giraitis et al. (2000b) and Corollary 3.1 in Giraitis and Robinson 
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(2001). These results combined with the convergence of the finite dimensional distributions 
allow us to use Lemma A.l below to provide a succinct proof of Theorem 2.1. We do not 
verify the convergence of the finite dimensional distributions here, as it can be established 
in a completely analogous way to the convergence of the one-dimensional distributions in 
Theorem 5.1 of Giraitis et al. (2000b). Lemma A. 1 may also be of independent interest. 

Lemma A.1. Suppose that a fourth-order stationary zero mean sequence {Yk) satisjes assump- 
tions (2.3), (2.5) and 

[ N t l  
~ - 1 1 2C Y, -+ a W ( t ) .  6 1 )mD 

j=1 

Then the weak convergence result (2.4) holds. 

Proof. Set 
n 


Since, by (A . l ) ,  N - ' / ~ s [ N ~ ]7 a W ( t ) ,  it remains to check the tightness. For the proof of 

tightness it is sufficient to show that 


uniformly over m = 0, . . . , N .  Relation (A.2)implies that a tightness criterion for N - ~ / ~ s ~ ~ ~ ~  

is satisfied (use a straightforward modification of Theorem 15.6 in Billingsley (1968)).Indeed, 

for any tl < t < t2, 


It remains to prove (A.2). We have that 


using the relation 


E ( Y j ~  . . . Yj4) = E(Yj1 Yj2) E(Yj3 Y j4 )  + E(Yjl Y,,) E(Yj2 Y j4 )  

+ E(Yj1 Yj4) E(Yj2 Yj3) + Cum(Yj, ,  Yj2 , Y,, , Yj4)  

which holds when E Yk = 0. Since 

we get, using (2.3)and (2.5),that 
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A.2. Proof of Theorem 2.2 and Lemma 3.1 
Theorem 2.2 follows immediately from Lemmas A.2 and A.3 below. 

Lemma A.2. Suppose that the Xk are given by (2.1)where the Yk satisfy Assumption 2.1 and 
the f ( N ) ( k )satisfy Assumption 2.2. Then, 

and 
N ~ ~ 5 ~SUP Za+(t)~ ~ Zac(t) .~ ~ RT - inf ~ 

ost 5 1 O ~ t i l  

Pro05 We focus only on the verification of (A.3),for (A.4)an analogous argument is used. 
Observe that 

where 

with xN= N - I  X j .  Thusxy=l 

By Assumption 2.1, as N + CQ 

and, by Assumption 2.2, 
P , 'Ns .~ , [N~I+ hO(t)  

in L'[o, 11,  which together with (AS) implies the statement of lemma. 

Lemma A.3. Suppose the Xk are given by (2.1) where the Yk satisfi Assumption 2.I and the 
f ( N ) ( k )satisfy Assumption 2.3. Let rN -t CQ, qN -+m, q N / N  --+ 0. Then 

Pro05 To estimate 
Y N  

i;,, = 20 + 2 C @ j ( q N ) ? j  
j= 1 
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write 

where 

and vj := f ( N ) ( j )- f ( N ) .  Thus 

where 

We show that, as N -+ oo, 

and 
~ ( r ~ q ~ ) - ~ i i , ~ : ~  (A. 10) 0 ,  

which implies the statement of the lemma. 
We prove first (A.8). Choose K > 0 large. Since, for j in (A.7), Kj  5 KgN = o(N) ,  

by (2.1I ) ,  
i K  

r i l  1vy = o(1). (A.1 1 )  

Write 
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Consider the term pN,2.Using summation by parts we get 

We have that 

112 1121 xi (vk+j-vk)l  5 C j  r ,  . (A. 13) 

Indeed, by (2.13), 

which implies ( A .  13). By (2.1l ) ,  

and therefore 

-< C K - ' / ~+ c ( q N / ~ ) ' 1 2 .  (A.  14) 

The last inequality in (A.14)was obtained using (2.10).Since qN = o ( N ) ,  pN,2 can be made 
arbitrarily small choosing K > 0 large enough. This and (A.12)yield that pN = o(1) .  

Using (2.13),we obtain 

uniformly in j = 1 .  . . . , qN because, by (2.1I ) ,  

Hence 

because 
'lN 

and q i l  + 0 .  This proves (A.8). 
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It was shown in Theorem 4.5 of Giraitis et al. (2000a) that, assuming (2.3) and (2.5), we 
have 

Therefore (A.9) holds. 
We prove now (A.10). Using summation by parts it follows that 

Under Assumption 2.1 (i), 

uniformly in i = 1, . . . , N - j and j = 1,  . . . .q N .Thus, by (2.10) and (2.11), 

uniformly in j = 1, . . . ,q N .Hence 

This proves (A. 10). 

Proof of Lemma 3.1. Relation (3.5) follows from Assumptions 3.1 and 2.2, using the same 
argument as in the proof of Lemma A.2. To show (3.6), use expression (A.6). By (A.8), 
~ ( r ~ q ~ ) - ~ i i , ~ ; ~5 a. In Theorem 4.5 of Giraitis et al. (2000a) it was shown that under 
Assumption 3.1, qi2dii,q;2The same argument as in the proof of Lemma A.3 shows +4. 
that 

which implies (3.6). 
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A.3. 	Proof of Proposition 4.1 

It suffices to show that 

(A.15) 

where 

a wO(t )+ a*h:(t) if la*/< oo, 1 if la*l < oo,
Z,*(t) = 

h:(t) if la*l = oo; T i = (  A ~ Nifla*l = C O  

and 

- 2  
S N , ~= o2+ op( l ) ,  if 1a*1< oo; (A. 16) 

2 q~ i f la*I=m.~ ~ , q = q N ~ ~ r * ( l - r * ) + 0 2 + o p ( q N A N - - + [ q N A ~ ~ ] 1 ' 2 + l ) ,  

(A.17) 

Since f ( N )  = (k*/N)AN+ we get that the quantities vk = f ( N ) ( k )- f ( N )  are 

uk = G) (:; [ A N  
 if 1 5 k 5  k * ,  
(A.18)  


- A ~  i f k *  < k s N  

Set pN = /ANIN,rN = A ~ N .  
From (A.18) it follows that 

[Nt]A k* - [Nt]  = ANN(tA r* - t i* + O ( N - I ) ) ,  (A. 19) 
Nk= l 

k*xN 

= A; ( ( 1  - ) k* + ( N - k * ) )  = A ~ N ( T * (- r*)+ O N ' ) ) .  
k= 1 

Identity (A. 19) and the proof of Lemma A.2 imply (A.15). 
Relations (A. 16) and (A.17)follow by the same argument as in the proof of Lemma A.3 

using (A.20)and the following relations. Since f ( N ) ( k )- f ( N ) ( k+ 1 ) = vk - vk+ I = 
ANl(k=k*),we have by (A.18)  

N-I 

and v; = O(A;)  as k - N .  
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